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ABSTRACT A major obstacle that restricts the application of notched flexure hinge based compliant
mechanism is its limited motion range. This paper presents the optimal design and tracking control of a
superelastic flexure hinge based 3-PRR compliant parallel manipulator (CPM) to achieve high precision
planar motion within centimeter’s translation range and up to 10 degrees’ rotational range. Firstly, a novel
asymmetric ellipse-parabola (AEP) notch shape is proposed, and the geometric parameters of the AEP
superelastic flexure hinge are acquired via multi-objective optimization to obtain desirable transmission
performance. Secondly, a nominal inverse kinematic model of the CPM is established, and the dimension
parameters of the 3-PRR manipulator are synthesized to maximize the dexterity of the CPM over the
regular workspace. Thereafter, a disturbance observer based inverse kinematic control scheme (DOB-IKM)
is proposed to suppress the model mismatches and external disturbances of the 3-PRR CPM, where the
unmodeled factors of the system are approximated through an online learning radical basis function neural
network (RBFNN) and the external disturbances of the CPM is observed and compensated by a disturbance
observer (DOB). Finally, a prototype of the 3-PRR CPM is manufactured, and experimental tests show the
effectiveness of the proposed control scheme and the superiority of the 3-PRR CPM.

INDEX TERMS Compliant parallel manipulator, inverse kinematics, superelastic flexure hinge, tracking
control.

I. INTRODUCTION
Flexure hinges always serve as passive rotational joints in
CPMs to transmit motion and force continuously. A lot of
adverse effects in conventional rigid parallel manipulators
can be eliminated by employing this transmission method,
such as, backlash, friction, wear, and lubrication [1], [2]. Thus
CPMs are capable of implementing tasks where high preci-
sion and high resolution are required [3], [4]. The notched
flexure hinge is the most frequently used flexure hinge for it’s
simply structure and high transmission precision. However,
the motion ranges of conventional notched flexure hinge
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based CPMs are mainly within micron scales due to the stress
concentration at the outer edge of the flexure hinges’ thinnest
section [5], which severely restricts the application of CPMs.

With the development of modern precision engineering,
CPMs with centimeter motion range are highly demanded
in biomedical sciences and optical engineering, such as,
scanning probe microscopy, lithography, and cell microma-
nipulation [6], [7]. A promising way to enlarge the motion
range of notched flexure hinge based CPMs is to improve
the deformability of the material which used to fabricate the
flexure hinges. Shape memory alloy (SMA) may be the best
candidate because of the superelasticity, whose maximum
recoverable strain is about 6% [8], while the maximum recov-
erable strain of most metal materials is only 0.2-0.8% [9].
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In our previous research [10], [11], we have investigated the
deformation characteristics of the superplastic flexure hinge
(flexure hinge fabricated by SMA) and found that the rotation
range of the superelastic flexure hinge is 6 times larger than
the one made of steel.

Besides thematerial, the notch shape of a flexure hinge also
has significant influence on its transmission performance.
A variety of notch shapes have been proposed in literature,
such as the right circular flexure hinge [12], the elliptic flex-
ure hinge [13], the parabolic flexure hinge, and the hyperbolic
flexure hinge [14]. However, those profiles of notch shapes
defined only by few parameters, which restricts the selection
of the optimal flexure hinge. In [15] Zelenika proposed a
notch shape constructed by a series of spline curves, which
is too complicated to find an optimal notch of the flexure
hinge. Therefore, a novel AEP notch shape that can deal
with the trade-off between the diversity and the complexity of
the optimization is proposed in this paper, and the geometric
parameters of the AEP superelastic flexure hinge is obtained
through multi-objective optimization to minimize the perfor-
mance deviation between the superelastic flexure hinge and
the ideal rotation joint.

In recent years, many 2 degrees of freedom (DOF) planar
translational CPMs with notched flexure hinge have been
developed, because of the limited deformability of the con-
ventional notched flexure hinges, these manipulators are hard
to obtain centimeter scale motion range [16]. Furthermore,
compared with the 2-DOF translational parallel manipulator,
the 3-DOF planar platform add the rotation about z-axis,
which can be applied to adjust the orientation of the sample.
Therefore, the 3-DOF CPM is more capable to perform pre-
cision manipulation tasks. To realize 3-DOF planar motion,
the manipulator usually can be constructed by three possible
parallel-kinematic configurations, i.e., 3-PRR, 3-PPR, and
3-RRR [17], [18]. In this paper, the 3-PRR configuration is
adopted to construct the 3-DOF planar CPM, since it is easier
to achieve a large rotational motion range than the other two
configurations. In the proposed 3-PRR CPM, the prismatic
joint (P) is the active joint and serves as the motion input,
the two passive rotational joints (R) are implemented by the
AEP superelastic flexure hinges to achieve high precision
motion. The dimension parameters of the 3-PRR CPM are
determined by an optimization procedure to maximize the
dexterity of the CPM over the regular workspace.

The control strategy of the CPM is also crucial to achieve
high precision motion. A nominal inverse kinematic model
of the CPM can be formulated according to the geomet-
ric relationships of the CPM. However, it cannot be used
to control the CPM directly, since there are many unmod-
eled factors in the 3-PRR CPM are not considered in that
model, such as the rotation error of the AEP superelastic
flexures, the material nonlinearity, the manufacture uncer-
tainties, and the assembling errors [19]. To deal with the
model mismatches and external disturbances of CPMs, many
close-loop control strategies are proposed, such as the PID
controller, sliding mode controller, robust controller and the

adaptive neural network controller [20]–[22]. Among these
control methods, the neural network is famous for the ability
to learn and approximate any arbitrary nonlinear function,
which can be used to address the uncertainties of mechanical
systems [23], [24]. Therefore, for the proposed 3-PRR CPM,
a DOB-IKM control scheme is designed, where the unmod-
eled kinematics of the CPM are estimated by an on-line
learning RBFNN and the system disturbances are suppressed
by a disturbance observer based feedforward compensation
design.

The remainder of this paper is organized as follows: a
novel AEP notch shape for the superelastic flexure hinge is
presented in Section II, and multi-objective optimization is
conducted on the notch parameters to obtain optimal compre-
hensive performance of the superelastic flexure hinge. Then,
a nominal inverse kinematic model of the CPM is established,
and the dimension parameters of the manipulator are opti-
mized in Section III by applying that model. Afterwards,
the DOB-IKM control scheme is proposed in Section IV to
suppress the model mismatches and external disturbances of
the 3-PRR CPM. In Section V, a prototype of the superelastic
flexure hinges based 3-PRR CPM is fabricated using the
optimized AEP superelastic flexure hinge and the optimized
dimension parameters of the manipulator, and experiment
tests are carried out to verify the performance of the control
scheme. Finally, the conclusion of this paper is provided in
section VI.

II. OPTIMIZATION OF THE SUPERELASTIC FLEXURE
HINGE
A. THE AEP SUPERELASTIC FLEXURE HINGE
In order to obtain optimal comprehensive performance of
a superelastic flexure hinge, the notch shape of the flex-
ure hinge should be carefully chosen. Typically, the elliptic
notched flexure hinge has larger motion range and lower
rotation stiffness than the parabolic flexure hinge, while the
parabolic flexure hinge has better motion accuracy than the
elliptic flexure hinge [14]. Furthermore, as reported in [25],
asymmetric notched flexure hinge has better transmission
performance than symmetric one. Therefore, an AEP notch
shape is proposed in this paper, and the schematic diagram of
the proposed AEP notched flexure hinge is presented in Fig.1,
where the profile of the AEP notch comprises two ellipse-
parabola (EP) curves, namely, EP curve 1 and EP curve 2,
and the two EP curves intersect at point p3 which is also the
minimum thickness point of the flexure hinge.

Each EP curve in Fig.1 is a combination of two smoothly
connected elementary curves, i.e., an elliptic curve and a
parabola. Taking EP curve 1 for example, curve s2 is the
elliptic arc, s1 is the parabola, and point p2 is the connec-
tion point. A coordinate frame oxy is assigned at the center
of the flexure hinge’s thinnest section, and the x axis of
the coordinate system follows the length direction of the
notch. Moreover, l denotes the length of the notch, λ denotes
the length coefficient, h denotes the height of the notch, and t
denotes the minimum thickness of the notch.
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FIGURE 1. Schematic diagram of the AEP superelastic flexure hinge.

The center of the ellipse curve s2 is located at (0, h/2), and
the parametric equation for the elliptic curve s2 is given by{

xe1 (ϕ1) = ne1 cosϕ1 ϕt1 ≤ ϕ1 ≤ 0
ye1 (ϕ1) = n sinϕ1 + h/2 −π/2 ≤ ϕt1 ≤ 0

(1)

where n = (h− ts)/2 denotes the length of the ellipse’s verti-
cal semi-axe, e1 denotes the ellipticity of curve s2, ne1 denotes
the length of the ellipse’s horizontal semi-axe, ϕ1 denotes the
eccentric angle of s2, and ϕt1 denotes the terminated eccentric
angle at the end point p2.
The parabola curve s1 is defined by two end points

p1 = (λl, h/2) and p2 = (ne1 cosϕt1, n sinϕt1 + h/2).
Since the parabola curve s1 and the ellipse curve s2 are
smoothly connected, they have the same slope at point p2,
i.e., y′p1 (x = ne1cosϕt1) = y′e1 (x = ne1cosϕt1). The curve
function can be expressed as below

yp1 (x) = a1 (x − ne1 cosϕt1)2 + b1 (x − ne1 cosϕt1)+ c1
(2)

where x satisfying ne1 cosϕt1 < x < λl, and the coefficients
are given as
a1 = (λl cosϕt1 − ne1)/

(
e1 sinϕt1 (λl − ne1 cosϕt1)2

)
b1 = −1/ (e1 tanϕt1)
c1 = h/2+ n sinϕt1

(3)

According to the geometric description, two constraints
should be introduced to formulate EP curve 1. Firstly, the x
coordinate value at point p2 must be less than that at
point p1, i.e.,

ge1 (x) = ne1 cosϕt1 − λl ≤ 0 (4)

Secondly, the slope of the curve s1 at p1 must be positive,
since the EP curve 1 is monotonic increasing, i.e.,

gp1 (x) = λl cosϕt1 − ne1 ≤ 0 (5)

Similarly, the equation for EP curve 2 can be obtained
by changing the geometric parameters (λl, e1, θ1) to
((1−λ)l, e2, θ2) in Eq.(1) and Eq.(2), thus the elliptic curve s3
is given by{

xe2 (ϕ2) = ne2 cosϕ2 ϕt2 ≤ ϕ2 ≤ −π/2
ye2 (ϕ2) = n sinϕ2 + h/2 −π ≤ ϕt2 ≤ π/2

(6)

and the parabola curve function is given as below

yp2 (x) = a2 (x − ne2 cosϕt2)2 + b2 (x − ne2 cosϕt2)+ c2
(7)

where x satisfying −(1 − λ)l < x < ne2 cosϕt2, and the
coefficients are given as

a2 =
−(1− λ)l cosϕt2 − ne2

e2 sinϕt2 ((1− λ)l + ne2 cosϕt2)2

b2 = −1/ (e2 tanϕt2)
c2 = (h/2+ n sinϕt2)

(8)

B. MULTI-OBJECTIVE OPTIMIZATION OF THE FLEXURE
HINGE
A static deformation model that formulates the relationship
between the end displacement and the external loads of an
AEP superelastic flexure hinge can be established by using
the modelling approach proposed in our previous work [11],
which can be expressed by the following general function

(xt , yt , θt) = 0 (g,Fe) (9)

where xt , yt and θt are the displacements of the end point
of the flexure hinge, g = (h, l, ts, λ, e1, θ1, e2, θ2) is the
geometric parameters of the flexure hinge, and Fe is the
general planar end force.

In order to evaluate the transmission characteristics of the
superelastic flexure hinge, the following four performance
indices are introduced, i.e, the rotation range θmax , rotation
stiffness km, rotation error rm, and the variation of cen-
ter shift 1r [26]. θmax represents the rotation angle of the
superelastic flexure hinge when the maximum strain occurs
at the outer edge of the flexure hinge up to the allowable
strain (for safety, the allowable strain is set as 3% here), km
represents the difficulty of a flexure hinge to deform under
end moment, rm represents the motion accuracy of a flexure
hinge, 1r represents the stability of a flexure hinge under
an external axial force. All the performance indices can be
obtained based on the deformation model established in [11].

1) OPTIMIZATION GOAL
The flexure hinge is a substitution of the conventional rigid
rotational joint in compliant mechanisms. Therefore, the opti-
mization goal for the AEP superelastic flexure hinge is to
minimize the deviation between the flexure hinge and the
ideal rotational joint, which can be given as,

km→ min
rm→ min
1r → min

(10)

2) DESIGN VARIABLES
Among the parameters which define the geometry of an AEP
notched superelastic flexure hinge, h and l are determined by
the size of the SMA stripe which used to fabricate the flexure
hinge, and ts is determined by the processing method. In this
paper, we set h = 10mm, l = 15mm, and ts = 0.4mm,
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TABLE 1. Material properties of Nitinol alloy.

and the remaining five parameters are selected as the design
variables X to optimize the AEP notched superelastic flexure
hinge,

X = {λ, e1, θ1, e2, θ2} (11)

3) OPTIMIZATION CONSTRAINTS
To guarantee that the established CPM has enough
workspace, in this paper, the rotation range of the superelastic
flexure hinge is designed to be larger than 15◦. Considering
the definition of the AEP notch, the optimization constraints
are formulated as,

θmax > 15
◦

ge1 (x) = ne1 cosϕt1 − λl ≤ 0
gp1 (x) = λl cosϕt1 − ne1 ≤ 0
ge2 (x) = ne2 cosϕt2 − (1− λ) l ≤ 0
gp2 (x) = (1− λ) l cosϕt2 − ne2 ≤ 0

(12)

where the subscripts 1 and 2 refer to EP curve 1 and EP
curve 2, respectively.

4) BOUNDARY CONSTRAINTS
The boundary constraints of the optimization process are
defined below, 

λ ∈ [0.2, 0.5]
e1 ∈ [1, 4]
ϕt1 ∈ [−π/2, 0]
e2 ∈ [1, 4]
ϕt2 ∈ [−π,−π/2]

(13)

5) OPTIMIZATION RESULTS
The NSGA-II algorithm is employed to find the solution
of the multi-objective optimization problem formulated by
Eq.(10)-(13), the initial population size is set as 200, and
the number of generations is 50. The material which used to
fabricate the AEP superelastic flexure hinge is Nitinol, which
is the most frequently used SMA material. The constitutive
parameters of Nitinol are measured by tensile tests and listed
in Table 1, and detailed description of the material’s constitu-
tive parameters can be found in [11].

The geometric parameters of the selected AEP superelastic
flexure hinge are λ = 0.31, e1 = 1.548, ϕt1 = −1.524,

TABLE 2. Performance indices of the superelastic flexure hinges.

e2 = 3.12, ϕt2 = −3.084, and the performance indices
of the flexure hinge are listed in Table 2. For comparison,
the performance indices of an elliptic superelastic flexure
hinge with the same notch length and minimum thickness of
the optimized flexure hinge are presented in Table 1, which
can be regarded as a special case of the AEP flexure hinge,
i.e., λ = 0.5, e1 = 1.563, ϕt1 = −π/2, e2 = 1.563, and
ϕt2 = −π .
It can be seen that the rotation range of the optimized

superelastic flexure hinge is 15.21◦, which is 6.22% higher
than the elliptic flexure hinge. Meanwhile, the rotational
stiffness, the rotation error and variation of the center shift
are decreased by 9.68%, 28.4% and 2.72% respectively. The
results above prove the superiority of the proposed notch
shape and the effectiveness of the optimization process.

It also should be pointed out that if the AEP flexure hinge is
fabricated by steel (the yield strain is 0.2%), the rotation range
is only 2.43◦, which is much smaller than the superelastic
flexure hinge.

C. PERFORMANCE VERIFICATION
The performance indices of the optimized AEP superelastic
flexure hinge have also been computed by the nonlinear
finite element analysis (FEA) softwareABAQUS to verify the
effectiveness of the superelastic flexure hinge’s deformation
model. The FEA model of the optimized superelastic flexure
hinge is shown in Fig.2, where the flexure hinge is scattered
by C3D20 elements.

The simulated performance indices are as follows: the rota-
tion range of the superelastic flexure hinge is θmax = 15.52◦,
the rotation stiffness is km = 4.63 Nmm/deg, the rotation
error is rm = 14.45µm, and the variation of center shift
is 1r = 1.16µm. It can be seen that the performance
indices obtained by the FEA simulation match well with
those presented in Table 1 with a maximum relative error
of 8.41%, which indicates the accuracy of the superelastic
flexure hinge’s deformation model.

III. DIMENSION OPTIMIZATION OF THE 3-PRR
MANIPULATOR
A. STRUCTURE OF THE 3-PRR MANIPULATOR
The geometric schematic of a rigid 3-PRR parallel manipula-
tor is presented in Fig.3. The fixed platform is an equilateral
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FIGURE 2. The FEA model of the optimized superelastic flexure hinge.

FIGURE 3. The 3-PRR planar parallel manipulator.

triangle defined by points A1 to A3, and the moving platform
is also an equilateral triangle defined by points C1 to C3.
Initially, the geometric center of the two platforms coincide
at point O with a decline angle ϕ. Two Cartesian coordinate
frames, the base frame Oxy and the moving frame Pxy, are
assigned at the geometric center of the fixed base and the
moving platform, respectively. The moving platform and the
base platform are connected by three identical limbs, and each
limb is actuated by a prismatic joint (P) and followed by two
passive rotational joints (R). The circumradius of the base
platform is denoted as R1, and that of the moving platform as
R2, the length of the passive rigid link is denoted as Ll , and the
orientation angles of the prismatic actuators αi(i = 1, 2, 3)
are 60◦, −60◦ and 180◦, respectively.

By replacing the passive rigid rotational joints in the rigid
3-PRR parallel manipulator with the optimized AEP supere-
lastic flexure hinges, a 3-PRR CPM is established, as shown
in Fig.4, where the rotation centers of the AEP superelastic
flexure hinges coincide with their rigid counterparts, and
the axial direction of the flexure hinges follows the length
direction of the initial rigid links. Note that the two supere-
lastic flexure hinges in one link are assembled in an alternate
manner, so that the structure is symmetrical along the length
direction of the link.

B. INVERSE KINEMATIC MODELING OF THE 3-PRR CPM
The inverse kinematic model of the 3-PRR CPM is used
to establish the relationship between the given position and

FIGURE 4. The superelastic flexure hinge based3-PRR CPM.

posture of the moving platform y = (xP, yP, ϕp) and the
corresponding displacement of the three prismatic joints
ρi(i = 1, 2, 3). Since the rotation error of the AEP supere-
lastic flexure hinge is much smaller than other flexure joints
under the same rotation range (e.g., the flexure pivots) [27],
a simple nominal inverse kinematic model of the 3-PRRCPM
can be formulated without considering the rotation error of
the superelastic flexure hinges. The vector constraint equa-
tion for the kinematic limb of the CPM can be given as below,

OP+ PCi = OAi + AiBi + BiCi (14)

Rewritten Eq.(14) in the Cartesian space algebraically,(
xp
yp

)
+ R(ϕp + ϕ)

(
x ′Ci
y′Ci

)
=

(
xAi
yAi

)
+ (ρi0 + ρi)

(
cosαi
sinαi

)
+ Ll

(
cosβi
sinβi

)
(15)

where, x ′Ci and y′Ci are the coordinates of point Ci in the
LCS, xAi and yAi are the coordinates of point Ai in the
GCS, ρi0 is the initial distance between point Ai and Bi,
βi is the angle of the links BiCi with respect to the x-axis
of GCS, and the transformation matrix R (•) is defined as

R (•) =
(

cos (•)
sin (•)

− sin (•)
cos (•)

)
.

According to Eq.(15), the displacement of the prismatic
joint ρi can be solved as

ρi1 =
−χi1 +

√
χ2
i1 − 4χi2

2

ρi2 =
−χi1 −

√
χ2
i1 − 4χi2

2
,

(16)

where the coefficients in Eq.(16) are given as

χi1 = 2 cosαiχi3 + 2 sinαiχi4
χi2 = χ

2
i3 + χ

2
i4 − L

2
l

χi3 = xp + x ′Ci cos(ϕP + ϕ)− y′Ci sin(ϕP + ϕ)− xAi
−ρi0 cosαi

χi4 = yp + x ′Ci sin(ϕP + ϕ)+ y′Ci cos(ϕP + ϕ)− yAi
−ρi0 sinαi

(17)
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Both ρi1 and ρi2 are feasible solutions of Eq.(15), however,
considering the initial configuration of the manipulator as
shown in Fig.4, ρi1 is selected as the final solution of inverse
kinematic problem.

Differentiating both sides of Eq.(15) with respect to time,
yields

ρ̇ = Jẏ (18)

where ρ̇ = (ρ̇1, ρ̇2, ρ̇3) is the velocity vector of the prismatic
joints, ẏ =

(
ẋp, ẏp, ϕ̇p

)
is the velocity vector of the moving

platform, and J is the Jacobian matrix of the manipulator
which can be expressed as

J =
1

ai · bi

 b1 (e1 × b1) · k
b2 (e2 × b2) · k
b3 (e3 × b3) · k

 (19)

where ai represents the unit vector of AiBi, bi and ei represent
BiCi and PiCi respectively, k is a unit vector in z axis. They
can be given as

ai = (cosαi, sinαi, 0)
bi = Ll (cosβi, sinβi, 0)

ei =

(
x ′Ci cos(ϕP + ϕ)− y′Ci sin(ϕP + ϕ),
x ′Ci sin(ϕP + ϕ)+ y′Ci cos(ϕP + ϕ), 0

)
k = (0, 0, 1)

(20)

The Jacobian matrix J represents the transformation
between the parameter space and the operational space of
the manipulator [28]. Because the 3-PRR manipulator has
two translational DOFs and one rotational DOF, the last
column in the Jacobianmatrix has different units with the rest.
A modified homogeneous Jacobian matrix is defined as [29]

Jm = J diag
(
1, 1,

1
R2

)
(21)

where R2 is selected as the characteristic length.

C. DIMENSION OPTIMIZATION
As the geometric parameters of the 3-PRR manipulator
have significant influence on its performance, optimization
on the dimension parameters of the 3-PRR manipulator is
implemented.

1) OPTIMIZATION GOAL
The reachable workspace of the 3-PRR manipulator can be
obtained by utilizing the inverse kinematic model, but it
is difficult to define and measure. Therefore, a cylinder in
the reachable workspace is adopted to describe the regu-
lar workspace of the CPM, as shown in Fig.5. RW is the
radium of the cylinder and 2ϕmax is the height of the cylinder.
The manipulator can reach any point (xP, yPϕp) inside the
cylinder.

The global conditioning index (GCI) is utilized as the
kinematic index to evaluate the dexterity of the manipulator

FIGURE 5. Schematic of the regular workspace.

over the workspace, which is given as [30]

CW =

∫
W

1
k
dW

W
(22)

where k = cond(Jm) is the condition number of the homo-
geneous Jacobian matrix, W is the considered workspace of
the manipulator, and Cw is a positive number less than 1
(the closer the value is to 1, the better dexterity of the
manipulator).

The optimization goal is to maximize the GCI over the
regular workspace, which can be expressed as

f = CW → max (23)

2) DESIGN VARIABLES
Based on the description of the manipulator, the optimization
variable X is given as

X = {R1,Ll,R2, ϕ} (24)

3) OPTIMIZATION CONSTRAINTS
Since the rotation angles of the passive rotation joints should
be within the motion range of the optimized AEP superelastic
flexure hinges. The following constraints are introduced,{

1βi ≤ 15◦

1γi ≤ 15◦
(25)

where1βi and1γi are the rotation angles of the superelastic
flexure hinges at point Bi and point Ci respectively.

In addition, as we want to design a 3-PRR CPM with
a centimeter-scale translation range and a 10-degree rota-
tion range, the following constrains are imposed in the
optimization {

RW ≥ 10
ϕmax ≥ 5◦.

(26)

4) BOUNDARY CONSTRAINTS
The limitations for the dimension parameters of the manip-
ulator and the rotation range of the superelastic flexure are
given as 

R1 ∈ [50, 150]
Ll ∈ [50, 150]
R2 ∈ [25, 100]

ϕ ∈
[
−
π

3
,
π

3

]
,

(27)
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5) OPTIMIZATION RESULTS
By applying genetic algorithm, the geometric parameters of
the CPM is finally calculated as R1 = 124.3mm R2 = 25mm
Ll = 75.77mm and ϕ = −46.07◦, the radius of regular
workspace is Rw = 10.198 mm, and the GCI over the regular
workspace of the manipulator is Cw = 0.88. The value of
GCI is very close to 1, which indicates the manipulator has
good kinematic performance in the regular workspace.

IV. CLOSE-LOOP CONTROL SCHEME DESIGN
The inverse kinematic model established above provides a
simple and analytic solution for the 3-PRR CPM. Unfortu-
nately, it cannot be directly used to control the manipulator,
because it does not consider some factors of the system,
such as the parasitic motion of the flexure hinges, the hys-
teresis mechanical behavior of the SMA, the manufacturing
uncertainties, the assembling error of the CPM, and external
disturbances, which may deteriorate the motion accuracy of
the manipulator.

The complete inverse kinematic model of the 3-PRR CPM
can be given in the following discrete form

ρ(k) = ρn(k)+ ρa(k)+ d(k) (28)

where ρn represents the nominal inverse kinematic model
of the CPM which is established in section III, ρa represents
the unmodeled kinematics of the CPM, and d(k) represents
the external disturbances. Accordingly, in this section we
proposed a DOB-IKM control scheme in which the nonlinear
unmodeled kinematics ρa is estimated online by a RBFNN
and the external disturbance of the system d(k) is observed
and suppressed through a DOB approach.

A. THE ONLINE LEARNING RBFNN
The RBFNN has been frequently used in mechanical systems
to deal with model mismatch because of the universal approx-
imation ability [31], [32]. The output of the RBFNN can be
expressed as,

ρ̂a (k) =WTH (29)

where W = [w1, . . .wm]T is the weight vector of the
RBFNN, H = [h1 (y) , h2 (y) , · · · , hm (y)]T is the activation
function, and m is the hidden neurons number of RBFNN.

The Gaussian function is chosen as the activation function,
which is given as below [33]

hi(y) = exp

[
−
(y− ci)2

2b2i

]
, i = 1, 2, · · ·m (30)

where ci and bi are the center and the width of the activation
function respectively.

Assuming that there exists an ideal weight matrix W∗ =
[w1,w2, · · · ,wm]T , the unmodeled kinematics ρa of the
CPM can be expressed as,

ρa =W∗TH(y)+ εd (31)

where εd is the estimation error of the RBF neural network.

The adaptive law for the weights of the RBFNN is chosen
as

Wj(k + 1) = Wj(k)+1Wj(k)

= Wj(k)+ ηej(k)HT (y) (32)

where η is a positive constant which represents the learning
rate, and e(k) is the output error of the RBFNNwhich is given
as

e(k) = ρa(k)− ρ̂a(k) (33)

Theorem: The value of ρ̂a (k) will converge to ρa(k)
asymptotically if the learning rate η satisfies the following
condition

0 < η < 2/

∥∥∥∥ ∂ ûj(k)∂wj(k)

∥∥∥∥2 (34)

Proof: Choose the following Lyapunov function:

V (k) =
1
2
e(k)2 =

1
2

(
ρa(k)− ρ̂a(k)

)2 (35)

Based on Eq(35) the increment of V (k) can be obtained by,

1V (k) = V (k + 1)− V (k)

= e(k)1e(k)+
1
2
1e(k)2, (36)

where 1e(k) is the increment of the estimation error, which
can be formulated as [34]

1e(k) = (∂e(k)/∂W(k))T1W(k) (37)

According to Eq.(32), the following relationship can be
found,

1Wj(k) = Wj(k + 1)−Wj(k) = −η
(
∂E(k)
∂Wj(k)

)
= −ηej(k)

∂ej(k)
∂Wj(k)

= ηej(k)
∂ρ̂j(k)
∂Wj(k)

(38)

Combining Eq.(37) and Eq.(38) with Eq.(36), 1V (k) can
be rewritten as,

1V (k) = −ηe2j (k)×

∥∥∥∥ ∂ρ̂j(k)∂Wj(k)

∥∥∥∥2×
(
1−

1
2
η

∥∥∥∥ ∂ρ̂j(k)∂Wj(k)

∥∥∥∥2
)
(39)

It can be easily found that first term on the right part of
Eq.(39) is negative, the second term is positive, and the last
term is positive if the learning rate η satisfies the condition
expressed in Eq.(34). The stability of the RBFNN is guaran-
teed, that is, the estimated ρ̂a(k) converges to the actual value
of ρa(k) with any arbitrary accuracy.
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FIGURE 6. Block diagram of the control scheme.

B. CONTROL SCHEME DESIGN
The external disturbances d(k) can be calculated by rewriting
Eq.(28) as,

d̂ (k) = ρ(k)− ρn (k)− ρ̂a (k)

= ρa (k)+ d (k)− ρ̂a (k) (40)

where d̂ (k) is the estimated disturbance. If the unmodeled
factor of the system ρa(k) is accurately estimated by ρ̂a(k),
i.e., the weight vector of RBFNN Ŵ converges to W∗, d̂ (k)
can be expressed as below∣∣∣∣ lim

W→W∗
d̂(k)− d(k)

∣∣∣∣ = ∣∣∣∣ρa(k)− lim
W→W∗

ρ̂a

∣∣∣∣ < ε (41)

Thus the observed disturbance d̂ will converge to its real
value d.

A block diagram of the proposed DOB-IKM control
scheme is shown in Fig.6. An accurate inverse kine-
matic model is established by adding the output of the
RBFNN ρ̂a(k) with the nominal inverse kinematic model
ρn(k). The observed external disturbance d̂(k) is compen-
sated through a low pass filter Q(s) to suppress the noise.
Moreover, a typical PD controller is added in the feedback
loop to improve the robustness of the controller.

V. EXPERIMENTAL TEST
A. THE EXPERIMENT SETUP
As shown in Fig.7, a prototype of the proposed CPM is
fabricated using the optimized AEP notch shaped supere-
lastic flexure hinge and the dimension parameters of the
manipulator. TheAEP superelastic flexure hinges aremade of
Nitinol. The fixed platform, the moving platform, and passive
intermediate links of the CPM are made of Al-7075 alloy.
The prismatic joint in the CPM is implemented by a linear
stage which consists of a linear ultrasonic motor (LUSM,
Nanomotion HR8), a linear guider, a linear grating encoder
(Renishaw, RGH24O, 10nm resolution), and a slider. Unlike
the frequently applied actuators in the compliant mecha-
nisms, e.g., piezoelectric stack actuators or voice coil motors,
the motion range of the LUSM is much larger, and most
importantly, the LUSM consumes no energy while holding
position (self-locking) [35], which is particularly suitable
for CPM to maintain the motion accuracy during a long
time period. The motion precision of the linear stage is

FIGURE 7. The experiment setup of the 3-PRR CPM (1. VTFP; 2. Moving
target; 3. Laser displacement sensor-1; 4. Laser displacement sensor-2;
5. Laser displacement sensor-3; 6. Linear guide; 7. Slider; 8. LUSM;
9. Linear encoder; 10 LUSM based linear stage).

about 250nm under a sliding mode controller. In addition,
the CPM is fixed on a vibration isolation table to decrease
the influence of external disturbances.

A target block is fixed on the moving platform, and the
output movement of themanipulator is captured by three laser
displacement sensors (LDS), where LDS-1 (Keyence H050,
measurement range: 20mm, resolution: 25nm) is arranged in
the vertical direction of the target block, LDS-2 and LDS-3
(Keyence H020, measurement range: 6mm, resolution: 1nm)
are arranged in the lateral direction of the target block.

As illustrated in Fig.8, the translation and rotation of the
end-effector can be obtained as below,

ϕp = arctan
(

2 L3
d3 − d2

)
+
π

2(
xp
yp

)
=

(
xA1
yA1

)
− R

(
ϕp
) ( L1/2

L2/2

)
,

(42)

where d1d2 and d3 are the displacements information
acquired from the corresponding LDS, and L1 and L2 are the
geometric parameters of the target block. The variables xA1
and yA1 are computed by
xA1 =

2L23 (L1 − d2 − d3)+ L3(L2 − 2d1)(d3 − d2)

4L23 + (d3 − d2)2

yA1 =
2L23 (L2 − 2d1)+ L3(d23 − d

2
2 − d3L1 + d2L1)

4L23 + (d3 − d2)2
,

(43)

where 2L3 is the distance between LDS-2 and LDS-3
A real-time control system is established by applying

MATLAB xPC target toolbox and National Instruments (NI)
data acquisition cards as illustrated in Fig.9. Command sig-
nals of the linear stages are generated through the DAC chan-
nels of a NI-6229 multifunction card, the displacement of the

VOLUME 7, 2019 174243



M. Yang et al.: Optimal Design and Tracking Control of a Superelastic Flexure Hinge Based 3-PRR Compliant Parallel Manipulator

FIGURE 8. Schematic diagram of LDS arrangement.

FIGURE 9. The hardware connection of the control system.

linear stages are obtained by a NI 6602 counter card, and
the displacement informationmeasured by LDSs are acquired
through the ADC channels of the NI-6229 card. The tracking
control algorithm is developed in MATLAB/Simulink on the
host computer and then downloaded to the target computer.

The parameters for the online learning RBFNN are
selected as follows: m = 11, cj = 0.001 ×
[−20,−16 . . . , 0, . . . , 16, 20] (j = 1, 2, 3), bj = 0.01, η =
200, the weight vector of the RBFNN is updated following
Eq.(32). In addition, Q(s) is selected as the first-order low-
pass filter with a cut-off frequency of 20 Hz, the parame-
ters of the PD controller are Kp = diag(100, 100, 60) and
Kd = diag(20, 20, 10), and the sampling time of controller
is 0.5 ms.

B. EXPERIMENTAL RESULTS
Experimental tests are carried out on the 3-PRR CPM
prototype to investigate the motion resolution and the track-
ing performance of the CPM. For convenience, the horizon-
tal and the vertical translations of the moving platform are
denoted as Dx and Dy respectively and the rotation of the
moving platform is denoted as Rz.

1) MOTION RESOLUTION
Consecutive step positioning is conducted on the proposed
3-PRR CPM to measure the resolution of the stage, and the
results are presented in Fig.10-Fig.12. It can be seen that the
translation resolution of the CPM is 0.2µm, and the rotation
resolution is 0.002◦. If the resolution of the LUSM and LDS
can be further improved, a higher resolution of the proposed
CPM could be achieved.

FIGURE 10. The translation path of the moving platform.

FIGURE 11. The rotation path of the moving platform.

FIGURE 12. The tracking results of the DOB-IKM controller.

2) TRACKING PERFORMANCE
Since the available measurement range of the LDS cannot
cover the entire regular workspace of the 3-PRRmanipulator,
a composite test trajectory which contains translation and
rotation within the measurement range of the LDS is defined.
The translation path of the moving platform is an ellipse,
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FIGURE 13. The translation path of the moving platform.

FIGURE 14. The rotation path of the moving platform.

FIGURE 15. The tracking results of the DOB-IKM controller.

where the length for Dx is set as 9.5mm, the length for Dy
is set as 2mm, and the path for Rz is set as a sinusoid with
an amplitude of 4◦, as presented in Fig.13 and Fig.14. The

TABLE 3. Tracking performance of different controllers.

FIGURE 16. The tracking results of open-loop controller.

total time to complete the composite trajectory is 60 seconds.
In addition, an open loop controller which uses the nominal
inverse kinematic solution in section III is also implemented
on the 3-PRR CPM.

The experimental results are presented in Fig.13 through
Fig.16, the maximum absolute error (MAXE) and the root
mean square error (RMSE) of the deviation between the given
trajectory and the actual trajectory of themanipulator are used
to quantitatively analyze the performance of the controller.
The MAXE and RMSE are defined as,

MAXE = max (|ei|) ; RMSE =

√√√√ 1
N

N∑
i=1

e2i , (44)

where ei is the corresponding tracking error, and N is the
number of sampling points.

As summarized in Table 3, the DOB-IKM control scheme
leads to a MAXE of 1.312µm, 2.691µm, and 0.010◦ for
Dx , Dy and Rz respectively, which are equivalent to 0.066%,
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0.029% and 0.250% of the motion range. The RMSE of the
DOB-IKM control scheme is 0.582µm, 0.880µm and 0.004◦

for Dx , Dy and Rz respectively, which are 0.029%, 0.009%
and 0.1% of the motion range. The performance of the open-
loop controller on the other hand is significantly reduced,
because of the unmodeled factors, such as the manufacturing
uncertainties, the assembling error of the CPM, and external
disturbances of the system. The MAXE of the open-loop
control scheme is 22.786µm, 51.240µm, 0.070◦ for Dx , Dy
and Rz respectively, i.e., 1.139%, 0.539% and 1.750 % of
the motion range. The RMSE of the open-loop controller is
14.178µm, 35.551µm, 0.039◦ forDx ,Dy and Rz respectively,
which is 0.709%, 0.374% and 0.975% of the motion range.

Therefore, the experimental test shows that the proposed
control scheme is capable of compensating the model mis-
match and suppressing external disturbance on the system.

VI. CONCLUSION
This paper presents a superelastic flexure hinge based pla-
nar 3-PRR CPM which is capable of achieving high pre-
cision with large regular workspace. A novel AEP notch
shape which combines the advantages of ellipse profile and
parabola profile is proposed, and the geometric parameters
of the AEP superelastic flexure hinge are optimized by con-
sidering the rotation stiffness, the rotation error, and the
variation of center shift simultaneously. A nominal inverse
kinematic model of the CPM was established to provide a
fast analytical kinematics solution for the optimization of the
CPM. The dimension parameters of the 3-PRR manipulator
were synthesized by maximizing the GCI of the manipulator
over the regular workspace. A 3-PRR CPM prototype was
fabricated based on the optimized AEP superelastic flexure
hinges and dimensional parameters of the manipulator. The
regular translation workspace of the designed CPM is a circle
with radius of 10mm, and the rotation range of the CPM
is ±5◦, which is much larger than the conventional CPMs
with notched flexure hinges.

A DOB-IKM control scheme which consists of an online
learning adaptive RBFNN and a DOB is proposed to sup-
press the model mismatches and external disturbances of the
3-PRR CPM, where the RBFNN was designed to estimate
the unmodeled kinematics of the 3-PRR CPM online, and the
DOB approach was utilized to observe and compensate exter-
nal disturbances of the system. Experimental results showed
that the translation resolution of the CPM is 0.2µm, and
the rotation resolution is 0.002◦, furthermore, the proposed
3-PRR CPM could achieve micron scale translational track-
ing accuracy and micro-degree rotational tracking accuracy
under the DOB-IKM control scheme.
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